Leistungsdiagnostik

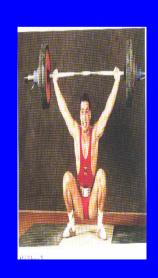
Andreas Schmid Medizinische Universitätsklinik Freiburg Abt.. Rehab. und Präv. Sportmedizin

Leistungsdiagnostik in der Praxis Was soll gemessen werden ??

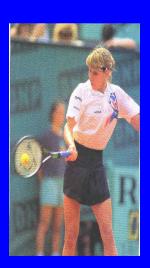
Leistungsdiagnostik

Hauptbeanspruchungs formen

Schnelligkeit


Kraft

Flexibilität


Koordination

Ausdauer

Leistungsdiagnostik - Anforderung

- Validität (Gültigkeit): in welchem Ausmaße wird wirklich das erfasst was entsprechend der Fragestellung erfasst werden soll.
- Reliabilität (Zuverlässigkeit): gibt den Grad der Genauigkeit an, mit der das entsprechende Merkmal gemessen wird (Messgenauigkeit).
- Objektivität: drückt den Grad der Unabhängigkeit der Testleistung von der Person, des Untersuchers, des Auswerters und des Beurteilers aus.
- Normiertheit: zeigt, ob Angaben vorliegen, die zur Einordnung des individuellen Testergebnisses als Bezugsgrößen herangezogen werden können.
- Vergleichbarkeit: liegt dann vor, wenn Paralleltests mit ähnlicher Gültigkeitsaussage vorliegen, mit denen der ausgewählte Test in Bezug gesetzt werden kann.

- Klinische Fragestellungen
- Feststellung der aeroben, anaerob-laktaziden oder anaerob-alaktaziden Leistungsfähigkeit
- Festlegung der Trainingsbereiche

Leistungsdiagnostik

- sportartspezifisch (bzw. auf Fragestellung) validiert
- standardisiert

Belastungsart Belastungsmodus

- wiederholbar
- vergleichbar

Erhobene Parameter

- Leistung, Zeit, Geschwindigkeit
- Herzfrequenz, Blutdruck
- Laktat
- spirometrische Daten

Leistungsdiagnostik in der Praxis Erhobene Parameter: Leistung, Zeit, Geschwindigkeit und Herzfrequenz

- PWC Test (170/min.; 150/min.; 130/min.)
- Maximaler Stufentest
- Cooper Test
- Conconi Test

Cooper-Test: Durchführung

Maximaler Test zur Ermittlung der Ausdauerleistungsfähigkeit, wird häufig in den Spielsportarten angewandt

Meist auf einer 400 m - Bahn anhand der in 12 min zurückgelegten Strecke lassen sich Rückschlüsse auf die Ausdauerleistungsfähigkeit des Sportlers/Patienten ziehen.

Cooper-Test: Bewertung

Leistungsgruppe Zurückgelegte Entfernung in km

I = sehr schlecht weniger als 1,61 km

II = schlecht 1,61 bis 2,0 km

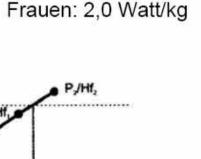
III = mäßig 2,0-2,4 km

IV = gut 2,4 - 2,8 km

V = sehr gut Mehr als 2,8

Keine Differenzierung der Stoffwechselvorgänge

Kategorisierung der Leistung für nicht ausdauertrainierte Männer (Cooper f 970)


Ausdauer – PWC ₁₇₀-Test als submaximaler Belastungstest

Physical Work Capacity Test (=PWC₁₇₀-Test):

- Bestimmung der Leistung bei 170S/min Herzfrequenz
- Relative Werte als Vergleichskriterium zu Referenzwerten (untrainiert):

Männer: 2,5 Watt/kg

Herzfrequenz 200

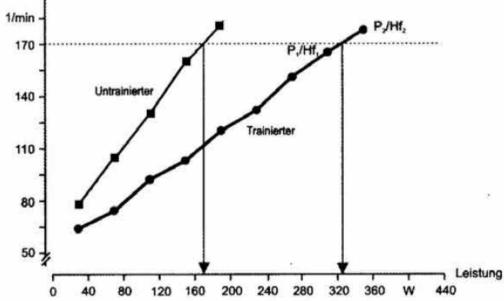


Abb. 188: Bestimmung der PWC₁₇₀ bei einem Nichtsportler und bei einer ausdauertrainierten Person

Differenzierung unterschiedlicher Stoffwechselvorgänge

- anaerob-alaktazide Energiebereitstellung, z.B. Kraft-, Sprinttests
- •anaerob-laktazide Energiebereitstellung
- •aerobe Energiebereitstellung, z.B. Spiroergometrie als Stufentest, VO2max-Test

Unterschiedliche Belastungsmodalität

Leistungsdiagnostik in der Praxis Anaerob-alaktazide Energiebereitstellung

Sprinttest: Zeit

Krafttest: Kraft EMG

Leistungsdiagnostik - Kraft

Swiss Olympic Medical Center

Leistungsdiagnostik Kraft

Das **Ziel der Kraftleistungsdiagnostik** besteht darin, den Leistungsstand eines Athleten oder Athletin in verschiedenen Kraftparametern darzustellen, um daraus den Nachweis einer Leistungsentwicklung und Trainingsempfehlungen ableiten zu können. Je nach Sportart oder Anliegen bieten wir folgende Testverfahren an:

Grundkrafttest Rumpf

- Einfacher dynamischer Test der Rumpfmuskelketten zur Ermittlung des Mindestkraftniveaus.
- Aus drei Teilübungen werden die Trainingsempfehlungen abgeleitet.
- Dieser Test ist für alle Sportarten geeignet.

Quattrojump

- Ermittlung der Explosivkraft der unteren Extremitäten und der Sprunghöhen.
- Der Test besteht aus vier verschiedenen Sprungarten und ist für alle Sportarten geeignet, die im weitesten Sinne Explosivkraft benötigen.
- Es erfolgt eine Niveaubestimmung und Trainingsempfehlungen.

Muskelleistungsdiagnostik

- Dreiteiliger Test der unteren Extremitäten (Isometrische Maximalkraft, Sprünge mit Zusatzgewicht, Seriensprünge mit leichtem Zusatzgewicht).
- Neben der detaillierten Bestimmung des Kraftniveaus stehen die umfangreichen Trainingsempfehlungen im Vordergrund.
- Besonders für Sportarten mit hohem Explosiv- und Maximalkraftanteil geeignet (Leichtathletik: Sprint und Wurf, Bob, Skisprung, Nordische Kombination, Ski alpin, Beachvolleyball etc.)

Isokinetik

- Die Beuger und Strecker des Knies bzw. die Schulterrotatoren werden isoliert in verschiedenen Geschwindigkeiten gemessen.
- Neben der Leistungsdiagnostik wird der Test vor allem in der Prävention/Rehabilitation eingesetzt.
- Die Messungen für den Schulterbereich werden besonders im Tennis und Kunstturnen angewandt. Das Messprotokoll für das Knie wird in allen Sportarten benutzt.

Leistungsdiagnostik in der Praxis Ausdauer

- meist Stufentest (z.B. 100/20/3, 25/25/3, 50/50/3)
- Parameter

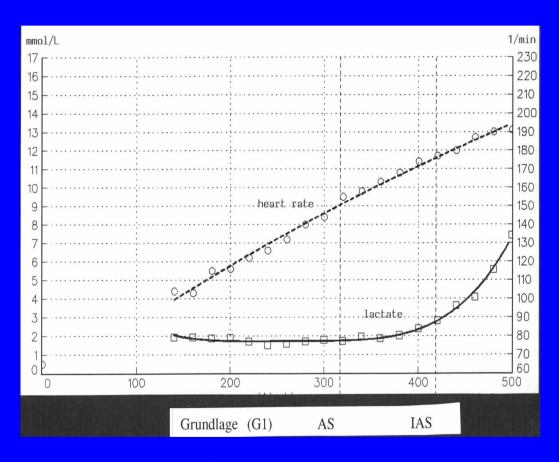
 Leistung
 EKG
 Herzfrequenz
 Blutdruck
 Laktat
 Spirometrie

Leistungsdiagnostik in der Praxis Ausdauer

• meist Stufentest (z.B.

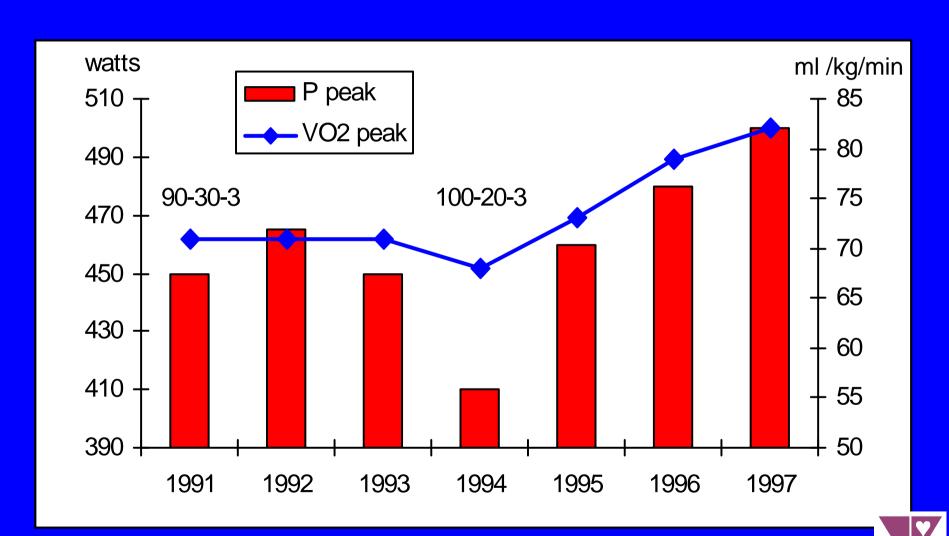
100/20/3, 25/25/3, 50/50/3)

Parameter

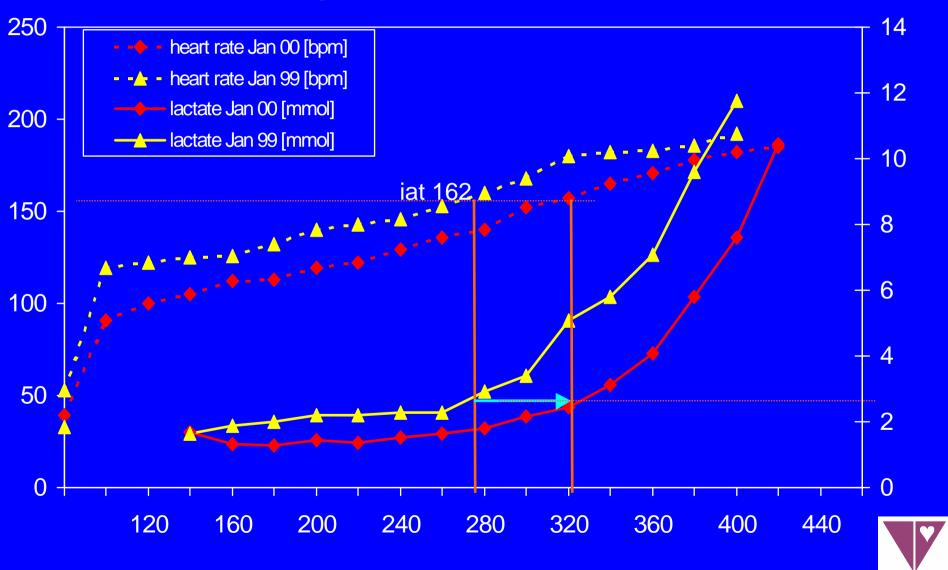

Leistung

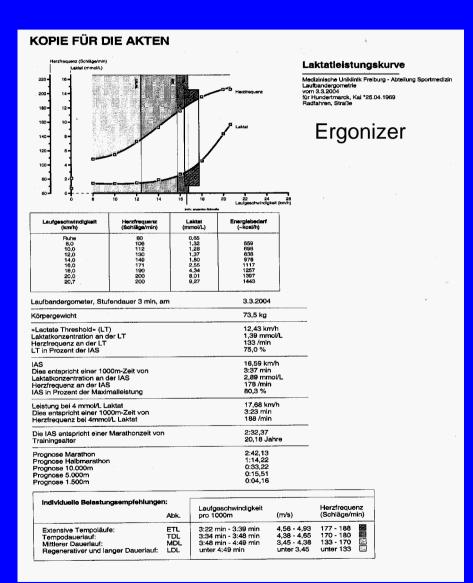
EKG
Herzfrequenz
Blutdruck
Laktat
Spirometrie

Herzfrequenz- und Laktatverlauf



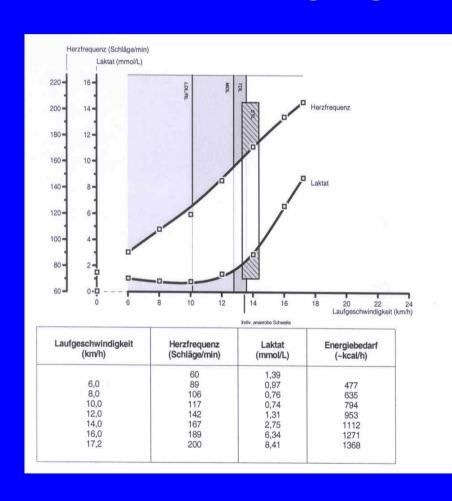
Stufentest auf dem Fahrradergometer Ausgangsbelastung 100 W, 20 W Steigerung, 3 min

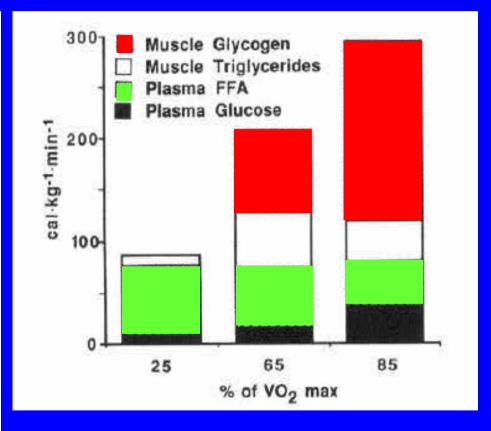

LEISTUNGSFUNKTIONSDIAGNOSTIK 1.0 - FAHRRADERGOMETER


Messdaten: Watt	W/kg	TF	HF	Laktat	VO2	м.і.	
. 0	0.00	-1	65	-1.00	4.38	-1.000	
100	1.37	-1	95	-1.00	19.95	-1.000	
120	1.64	-1	96	-1.00	23.06	-1.000	
140	1.92	-1	104	1.92	26 17	0 073	
160	2.19	-1	103	1.93	Vorrat: ca. 25 µmol CrP	ADP +	
180	2.47	-1	115	1.88	pro g Muskel		kurzzeitige Höchstleistung
200	2.74	-1	116	1.90		. <u> </u>	
220	3.01	-1	122	1.69	(or)	ATP)	\rightarrow
240	3.29	-1	126	1.50	Spaltung von Kreatinph	nosphat	
260	3.56	-1	132	1.58°	ca. 100 µmol/g l		
280	3.84	-1	140	1.71	Glykogen ca. 100 µmol/g	Muskei	
300	4.11	-1	144	1.78	Glukose-6-P		1
320	4.38	-1	155	1.72	de la decida decida de la decida decida de la decida decida decida de la decida de la decida de la decida de la decida decida decida de la decida decida de la decida	1	ATP
340	4.66	-1	158	1.94	ğ	ATP	
360	4.93	-1	163	1.88	anaerok	Nettogewinn: 2 mol ATP/mol Glul	kose längere
380	5.21	-1	168	2.03	œ .	(3 mal ATP/mol Gluk	
400	5.48	-1	174	2.37		<u> </u>	-
420	5.75	-1	177	2.81	Tomas day	pH-A	146-II X
440	6.03	-1	180	3.63	CO - 107.		ment
460	6.30	-1	187	4.07	2 Pyruvat	2 Milchsäure	2 Laktat zu Lei
480	6.58	-1	190	5.57	2. Anaerobe Glykolyse		und H
500	6.85	-1	191	7.43			
					2 Azetyl-CoA		ettogewinn: P/mol Glukose
Berechnete Größen:		2mmo1	3mmo]	L 4mm	do la	H ₂ O 25	Dauerleistung
Leistung/kg [w	att/kg]		5.85	6.2	Zitronen-	7 3	
Herzfrequenz	[1/min]		178		saure	Atmungs-/ ATP	$\overset{\longleftarrow}{\longleftarrow}$
P/kg/HF*100 [watt/		0.01	3.29		3. Glukose-	kette	
	kg/min]		70.87		Ovidation -	53.74	
Laktat	[mmol]	2.00	3.00			1.74	
% Max. Leistung			85.46			63.44	
Belastungszeit pro Belastungszeit ges Laktat-Konstante:		3.00 mi 63.00 mi 1.00					

Maximale Leistungsdaten eines professionellen Spitzradrennfahrers im Verlauf der Jahre

Leistungsentwicklung eines Neoprofis im Stufentest





- Festlegung der Trainingsbereiche
- Wettkampfprognosen



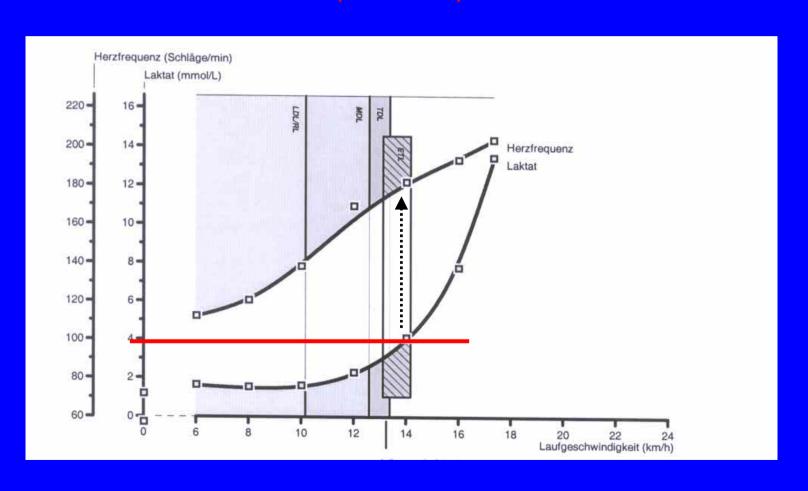
Festlegung von Trainingsbereichen

•Romijn JA, Coyle EF, Sidoddis L, et al. Am J Physiol 1993

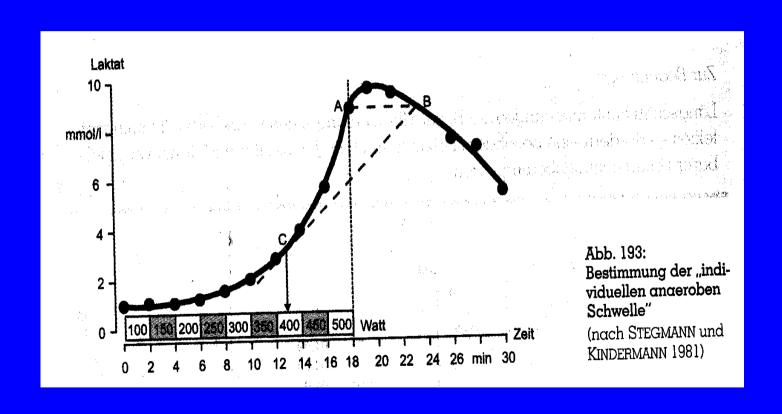

"Schwellenkonzepte"

Aerobe Schwelle:

Minimum des Laktatäquvalents (VO2/Laktat)
"Beginn des Laktatanstiegs"


"Schwellenkonzepte"

(Individuelle) Anaerobe Schwelle:

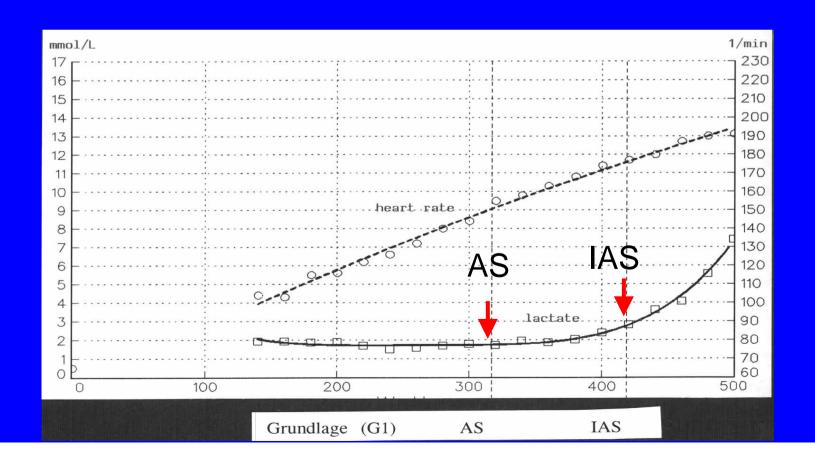


Laktatproduktion = max. Laktatelemination Maximales Laktat-steady-state (maxLass) "max. möglich Ausdauerleistungsfähigkeit"

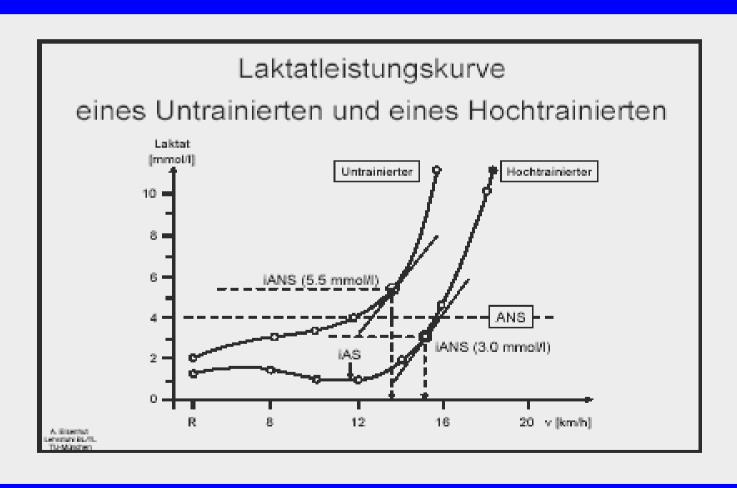
Fixe 4mmol(3mmol)-Schwelle

Stegmann-Schwelle

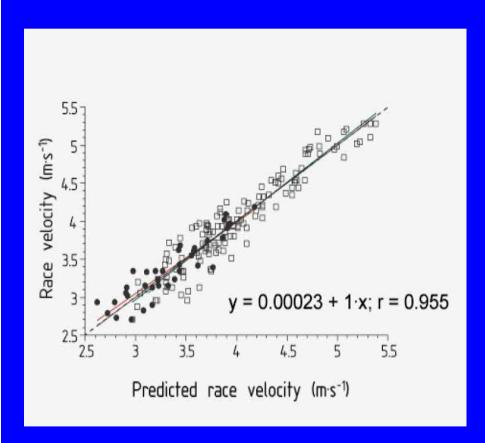
Individuelle anaerobe Schwelle (IAS)


Laktat an der aeroben Schwelle + Laktatkonstante

Laktatkonstante Radergometrie: + 1,0 mmol/l


Laktatkonstante Laufbandergometrie: + 1,5 mmol/l

Individuelle anaerobe Schwelle (IAS)


Laktat an der aeroben Schwelle + Laktatkonstante

"Anaerobe Schwelle"

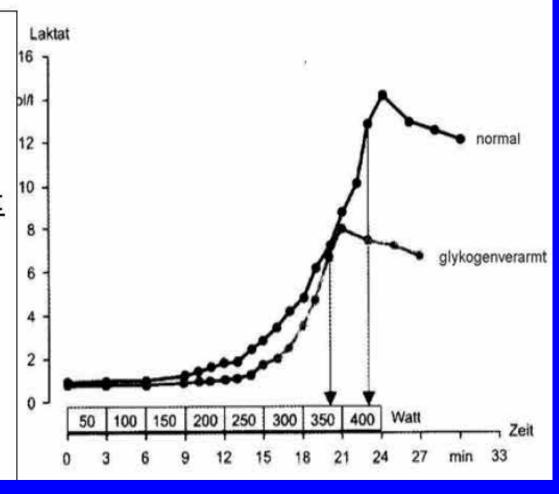
Leistungsdiagnostik - Wettkampfprognose

	2.7.2002
Körpergewicht	74 kg
lactate threshold (LT) Laktatkonzentration an der LT Herzfrequenz an der LT LT in Prozent der IAS	12,76 km/h 1,35 mmol/L 131 /min 78,25 %
IAS Dies entspricht einer 1000m-Zeit von Laktatkonzentration an der IAS Herzfrequenz an der IAS IAS in Prozent der Maximalleistung	16,31 km/h 3:40 min 2,88 mmol/L 150 /min 78,15 %
Leistung bei 4 mmol/L Laktat Dies entspricht einer 1000m-Zeit von Herzfrequenz bei 4mmol/L Laktat	17,27 km/h 3:28 min 155 /min
Die IAS entspricht einer Marathonzeit von Trainingsalter	2:35,14 12,73 Jahre
Prognose Marathon Prognose Halbmarathon Prognose 10.000m Prognose 5.000m Prognose 1.500m	2:38,07 1:14,06 0:33,24 0:15,45 0:04,14

Leistungsdiagnostik - Stufentest

Einflussfaktoren auf die Laktatkinetik beim Stufentest:

- Stufendauer
- Stufenbeginn
- Steigerungsrate
- Schwellenmodell
- Labor-/Feldbedingungen
- Trainingszustand
- Glykogenverarmung (Nahrungskarenz/Ernährung)

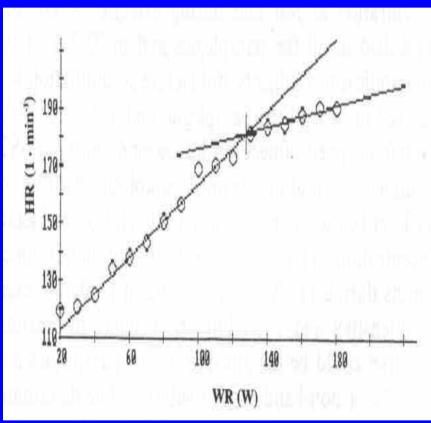

Leistungsdiagnostik - Stufentest

Laktat-Schwellenkonzepte

Einflussfaktoren auf die Laktatkinetik beim Stufentest:

Glykogenverarmung (Nahrungskarenz/Ernährung):

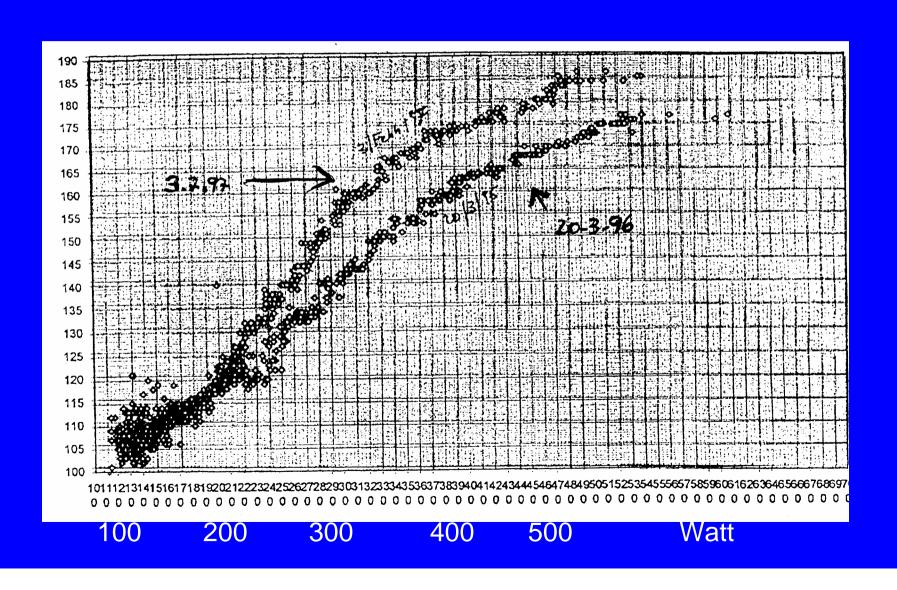
mangelndes
 Substratangebot führt zur
 Rechtsverschiebung, aber
 keine maximale
 Laktatmobilisation möglich

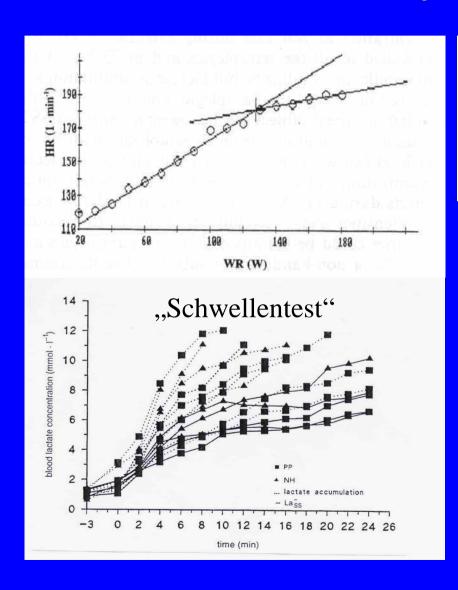

Leistungsdiagnostik in der Praxis Conconi-Test

- Beurteilung der aeroben Leistungsfähigkeit
- Linearer Anstieg der Hf im submaximalen Bereich, geringere Anstieg im maximalen Bereich
- Nach Conconi kennzeichnet der Knickpunkt (Deflektion) die anaerobe Schwelle.

Schwierigkeiten:

- Deflektion tritt nicht bei allen Probanden auf
- lineare Steigung mitunter bis 190/min
- der Test erfordert eine max.


Ausbelastung


Leistungsdiagnostik in der Praxis Conconi-Test: Durchführung

- •Testdauer: Erw. 15-20 min
- Pulsmesser und Stoppuhr werden an den 200m
 Teilabschnitten HF und Laufzeit protokolliert
- •Es kommt zur vollen Auslastung nach ca. 12-16 Geschwindigkeitssteigerungen
- •Wertpaare werden auf Millimeterpapier übertragen, durch Anlegen einer Geraden
- •Übergang vom linearen in nichtlinearen Anstieg der Herzfrequenz wird als Deflektionspunkt der Herzfrequenz identifziert

Leistungsdiagnostik in der Praxis Conconi-Test: Beispiel

Leistungsdiagnostik in der Praxis Conconi-Test: Entspricht Deflektion IAS??

	WR _{AT4}	(W)	$WR_{DP}(W)$	
	Mean	SD	Mean	SD
PP (n = 8) $NH (n = 8)$	108.9 107.7	20.2 12.9 ^b	118.7 139.9	15.2 ^a 22.1

Ermittlung des Deflektionspunktes bei Paraplegikern möglich

Leistung am
Deflektionspunkt im Vgl. zur
IAS in der Regel zu hoch

Messung von

- Atemvolumina
 - Atemminutenvolumen(VE)
 - Atemfrequenz (bf)
- Atemgasen
 - Sauerstoffaufnahme(VO2)
 - Kohlendioxidabgabe(VCO2)

Sauerstoffaufnahme: Menge an O2/min, die vom Organismus zur Energiebereitstellung umgesetzt wird

Beispiel für die Messung der Sauerstoffaufnahme (VO2)

Atemminutenvolumen = 100 l/min

Sauerstoffgehalt der eingeatmeten Luft = 21 %

Sauerstoffgehalt der ausgeatmeten Luft = 18 %

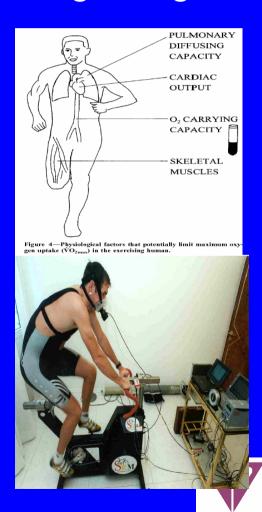
Wie hoch ist die Sauerstoffaufnahme???

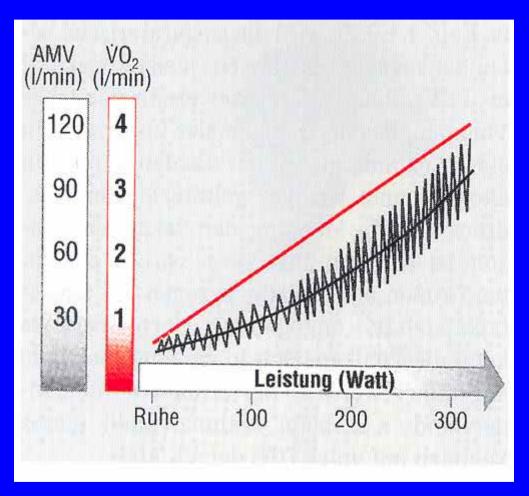
Beispiel für die Messung der Sauerstoffaufnahme (VO2)

Atemminutenvolumen = 100 l/min

Sauerstoffgehalt der eingeatmeten Luft = 21 %

Sauerstoffgehalt der ausgeatmeten Luft = 18 %


3 % von 100 l/min = 3 l/min


Leistungsdiagnostik in der Praxis Ausdauer: VO2max-Test

VO2max: Bruttokriterium der aeroben Leistungsfähigkeit

- Rampentest (zwischen 10/10/1min. und 150/10/10 sec)
- Parameter
 Leistung
 Herzfrequenz
 - Spirometrie
- Bereiche:

HTX < 12 ml/kg KG
NB um 45 ml/kg KG
Ausdauerathlet > 80 ml/kg KG

Atemäquivalent =

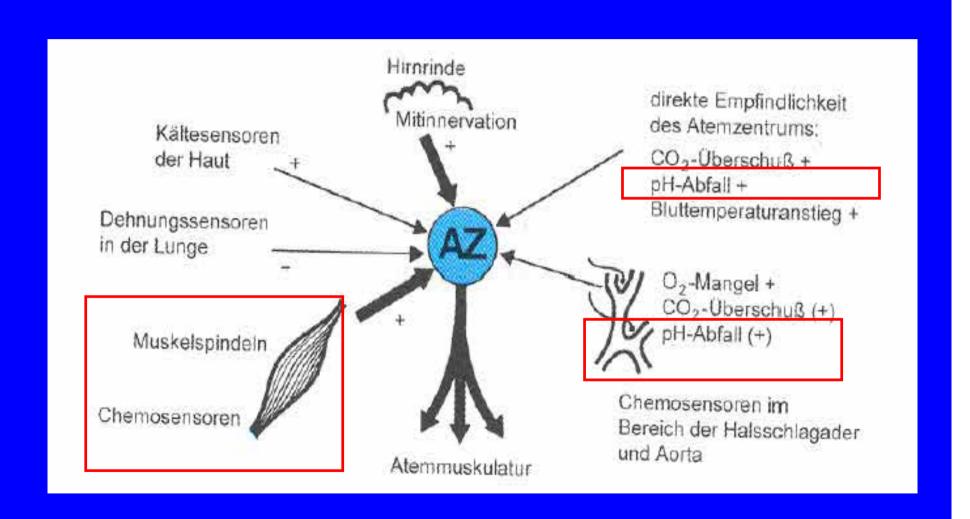
Quotient aus

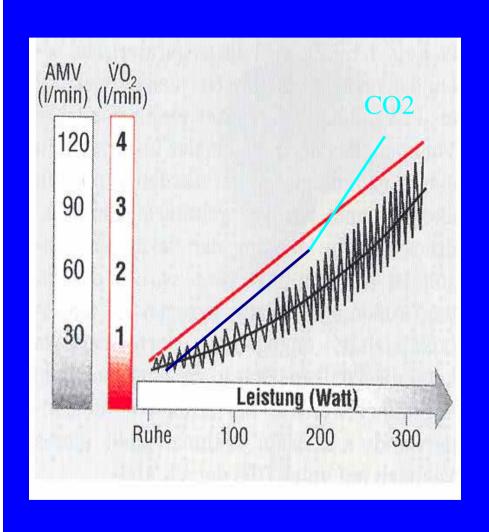
Atemminutenvolumen

und

Sauerstoffaufnahme

Beispiel für die Messung der Atemäquivalents (AÄ) Atemminutenvolumen = 100 l/min Sauerstoffaufnahme = 3 l/min

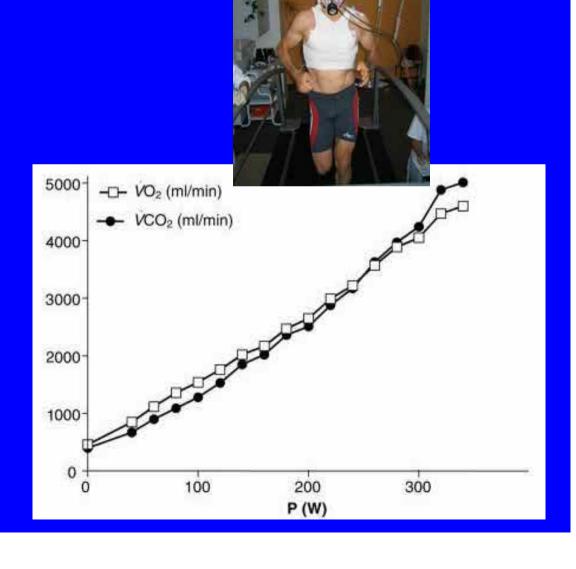

Atemäquivalent 100 l/min / 3 l/min = 33


Ruhe: AÄ ca. 25 (25 1/min für 1 1/min O2)

Maximal Belastung: AÄ 30-35

Minum des AÄ: optimaler Wirkungsgrad der Atmung

Lungenfunktion – Regulation Atemzentrum im Hirnstamm


Respiratorischer Quotient (RQ) =

Quotient aus Sauerstoffaufnahme und Kohlendioxidabgabe

Hyperventilation =

gesteigerte alveoläre Ventilation bei normalem Sauerstoffpartialdruck und erniedrigtem CO2-Druck

	Zeit min	Watt	HR /min	V'E 1/min	BF /min	V'02 ml/min	VO2/kg ml/ min/kg	V'CO2 ml/min	Eq02	RQ
	*** 0 E 0 B 0 C 0 C	ans allex	Manager and Manager		530		0 1	18	P.O. A	0.22
L	08:10	0	0	20.0	18	692	11.5	668	25.3	0.97
	Zeit	Watt	HR	V'E	BF	V'02	VO2/kg	V'C02	Eq02	RQ
	min	W	/min	1/min	/min	ml/min		ml/min	-	-
	28:30	0	0	48.5	60	1605		1360	25.2	0.85
	28:40	0 0 0 0	0	51.0	48	1713	28.6	1498	26.0	0.87
	28:50	0	0	53.1	59	1773	29.6	1557	25.4	0.88
7	29:00	0	0	55.6	50	1749		1622	27.9	0.93
	29:10	0	0	58.7	54	1840		1752	27.9	0.95
	29:20		.0	64.4	64	1905		1857	29.2	0.9
	29:30	0	.0	63.2	58	1822		1804	30.4	0.99
	29:40	0	0	68.2	68	1780		1818	33.2	1.07
	29:50	0	0	71.8	58	1931	32.2	1990	33.1	1.03
- [30:00	0 0	0	65.4	53	1698		1778	34.3	1.05
	30:10	0	0	71.7	7.8	1800		1824	34.0	1.01
L	30:20		0	76.6	78	1736	28.9	1784	38.0	1.03
	Benerku									
	30:30	0	0	67.6	62	1776	29.6	1791	33.4	1.01

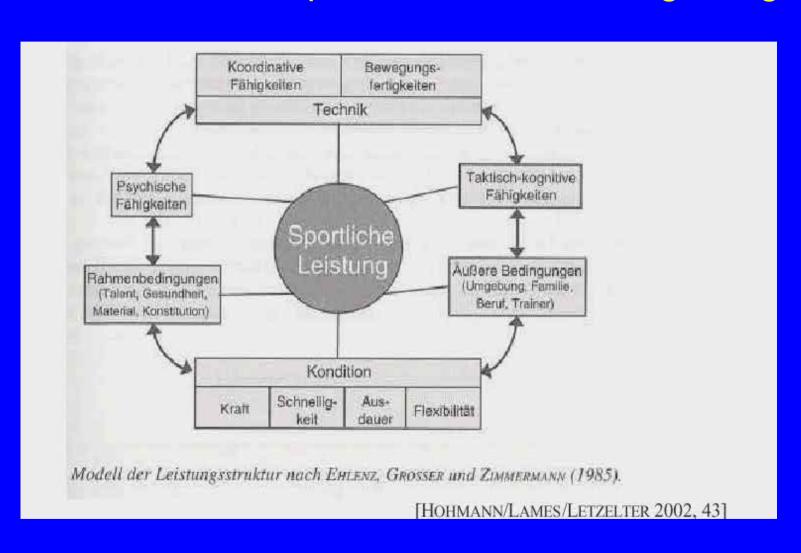
Vorstart

Belastung

VE = 76 l/min, Bf = 76

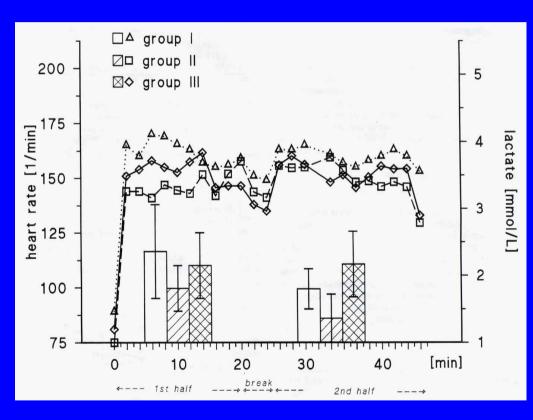
VO2 = 1,73 l/min, CO2 = 1,78 l/min

Protok	coll:	LI	NORM_I	B-2	Erg	ometer:		Laufbar	nd
Zeit min	Watt W	HR /min	V'E 1/min	BF /min	V'02 ml/min	V02/kg ml/ min/kg	V'CO2 ml/min	Eq02 -	RQ
06:20	.0	0	49.0	28	1729	26.0	1866	26.1	1.08
06:30	0	0	76.9	45	2322	34.9	2693	30.5	1.10
06:40	U	0	79.3	.42	2181	32.8	2782	33.7	1.20
06:50	0	0.	83.2	40	2753	41.4	2936	28.3	1.00
07:00	0	0	91.7	43	3346	50.3	3169	25.7	0.95
07:10	0	0	99.0	42	3709	55.8	3458	25.1	0.93
07:20	0	0	102.3	44	3918	58.9	3698	24.6	0.94
07:30	0	0	115.8	53	3957	59.5	3926	27.5	0.99


VE = 115 1/min

VO2 = 3.9 1/min

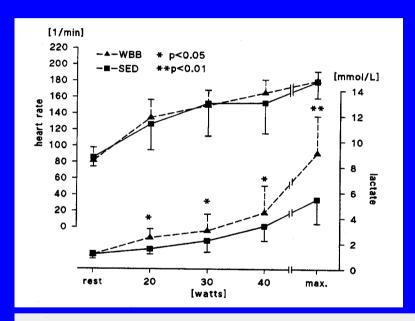
VCO2 = 3.8 1/min


Bf = 53/min

Unterschiedliche Komponenten der Leistungsfähigkeit

Leistungsdiagnostik in der Praxis Sportartspezifische physiologische Anforderung

Rollstuhl-Basketball


Hohe Ausdauerkomponente

Geringe anaerob-laktazide Anforderung

Hohe Sprintleistung

Sportartspezifische Leistungsdiagnostik: Rollstuhl-Basketball

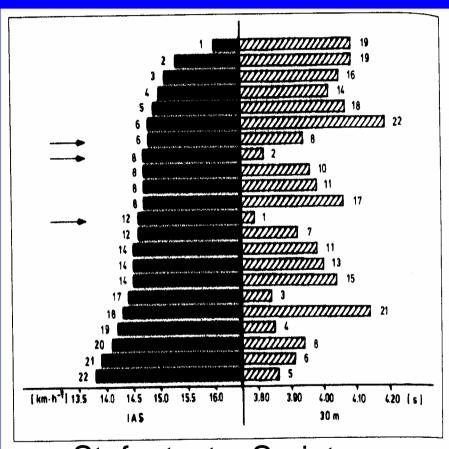
Stufentest (Rollstuhlergometer)

Korrelation der im Stufentest ermittelten Daten mit der Spielstärke

Rollstuhlergometrie ist eine sportartspezifische Leistungsdiagnostik für Rollstuhl-Basketball

530 SCHMID ET AL.

Am. J. Phys. Med. Rehabil.


TABLE 2

Average lactate (Lac), heart rate (HR), and game evaluation (scorer points) from the different groups (Group I, II, and III) of wheelchair basketball players during the first (FT1) and second (FT2) half of the field test

Group WBB	n	Lac _{FT1} (mmol·l ⁻¹)	Lac _{FT2} (mmol·l ⁻¹)	$HR_{F\Pi}$ $(l \cdot min^{-1})$	HR _{FT2} (l·min ⁻¹)	Scorer Points _{FT}
I	3	2.36 ± 0.70^{a}	1.80 ± 0.32	160.3 ± 8.5°	157.1 ± 4.0	$1.3 \pm 0.4^{a,b}$
II	6	$1.81 \pm 0.33^{\circ}$	1.36 ± 0.36^{b}	$145.0 \pm 4.6^{\circ}$	151.5 ± 8.1	$3.4 \pm 0.8^{b,c}$
III	4	2.15 ± 0.44	2.17 ± 0.49^a	152.1 ± 5.3	153.3 ± 5.1	$7.8 \pm 0.8^{a,b}$

Significantly (P < 0.05) different from "Group II, "Group III, and Group I.

Sportartspezifische Leistungsdiagnostik: Fußball

Stufentest Sprint

(aus: Kindermann et al., 1993, S.240)

Abb.5

SRM - Radmeßtechnik

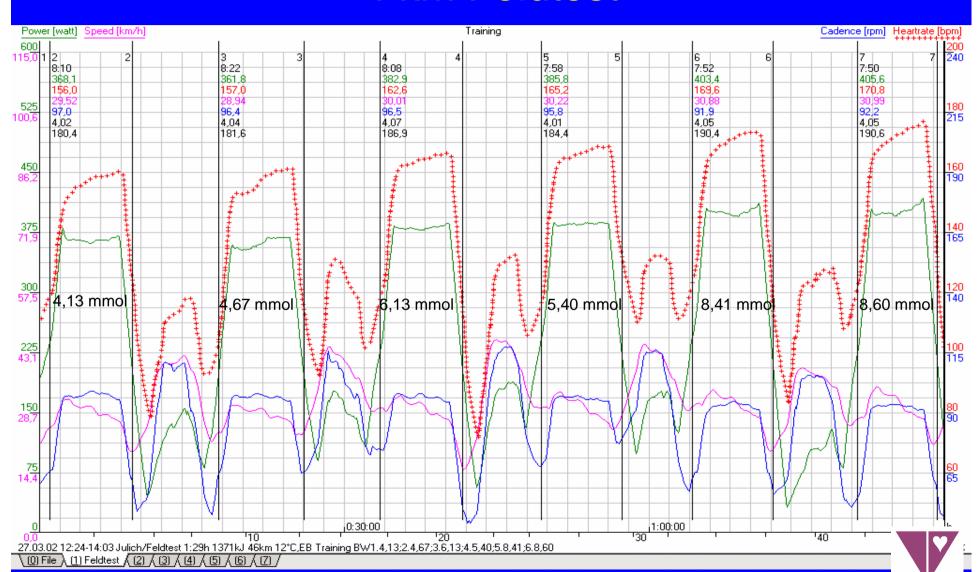
Leistung, Herzfrequenz, Geschwindigkeit, Trittfrequenz, Zeit

Feldtest

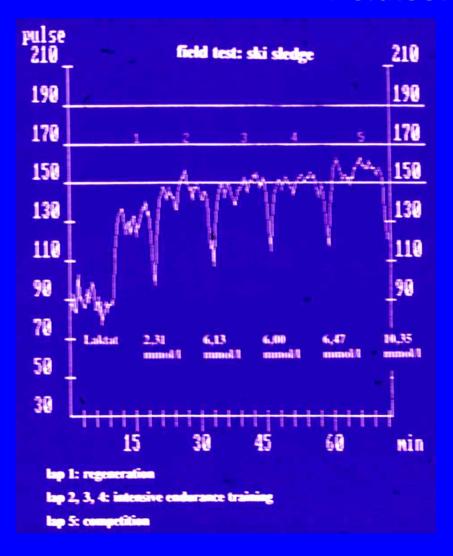
- SRM Kraftmeßpedal
- Speicherung der erhobener Daten (Rad-Meßtechnik)
- Lactat-Messung

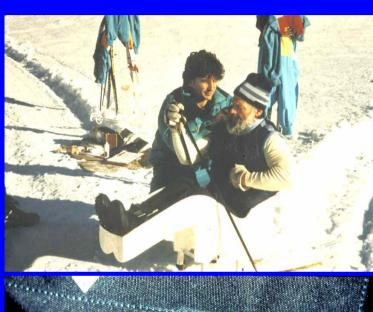
Feldtest

Definition unterschiedliche Trainingsbereiche anhand der Laktatkonzentration


z.B. Radsport: GA1 < 2 mmol/l

 $GA2 \qquad 2-4 \text{ mmol/l}$


EB 4-8 mmol/l


 $K3 \qquad 3-6 \text{ mmol/l}$

4 km Feldtest

Feldtest

Einfacher Feldtest

Parameter: Hf max, Hf Ruhe

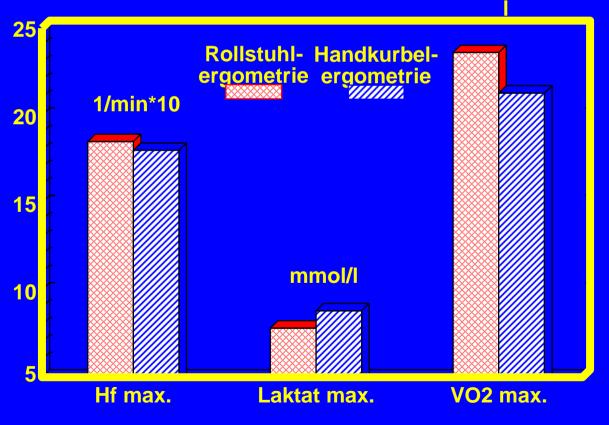
Belastungspuls = Hf max – Hf Ruhe

Aerobe Schwelle:

60% Belastungspuls + Hf Ruhe

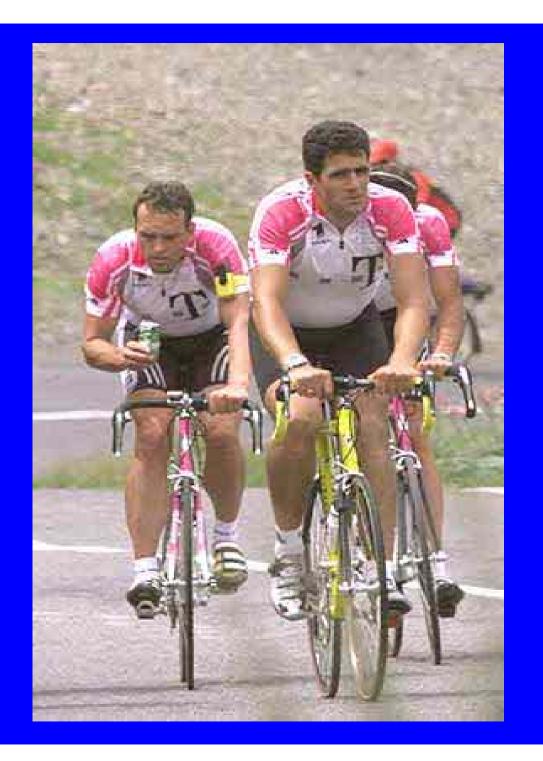
Anaerobe Schwelle:

80% Belastungspuls + Hf Ruhe


Jeweils 30 Minuten-Lauf an den kalkulierten Schwellen

mit Zeitdokumentation

- muß die jeweilige Fragestellung bzw. die Sportart (sportartspezifisch, ins Training übertragbar) berücksichtigen
- sollte standardisiert, validiert und wiederholbar sein
- auch "einfache" Tests können ausreichende Informationen für die routinemäßige Praxis liefern
- schließt sportartspezifische Feldtests mit ein


Sportartspezifische Leistungsdiagnositk

Rollstuhlergometrie (6 km/h, 2 km/h, 3 min) Handkurbelergometrie (25 W, 25 W, 3 min)

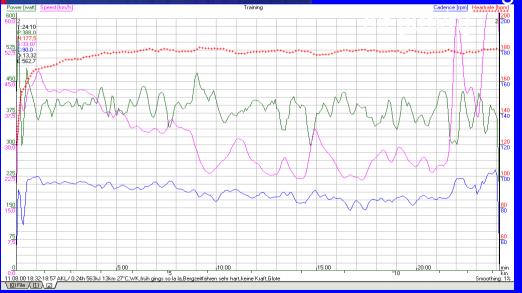
Sportartspezifische Leistungsdiagnositk

Paraplegiker: 8 km/h, 2 km/h, 3 min 20 W, 10 W, 3 min

Tetraplegiker: 4 km/h, 1 km/h, 3 min 10 W, 5 W, 3 min

Sportartspezifische Leistungsdiagnostik bei Rollstuhl-Sportarten Skischlitten

Paraplegiker: 0% Laufbandsteigung, 2%, 3 min, v = 6 km/h


Sportartspezifische Leistungsdiagnostik bei Rollstuhl-Sportarten

Hand-Bike

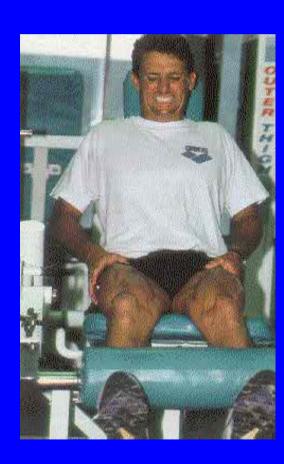
- Leistung [Watt]
- Herzfrequenz [1/min]
- Tretfrequenz [1/min]
- Geschwindigk

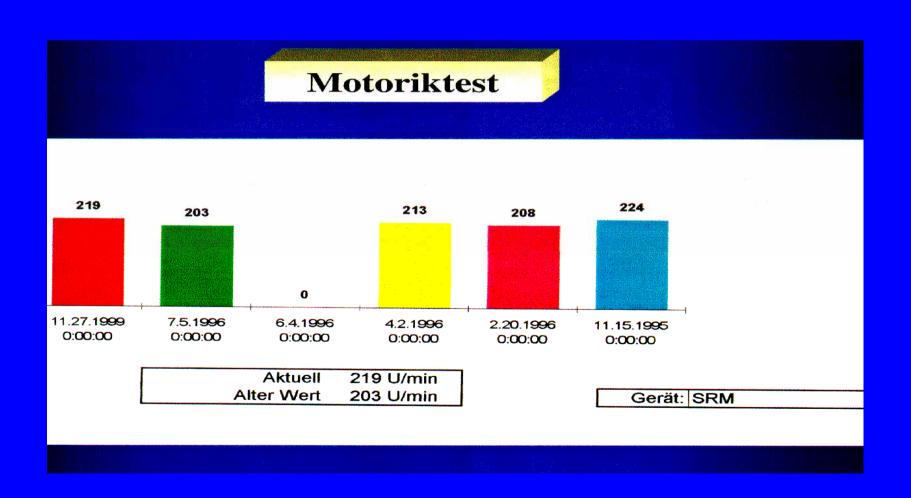
Belastungsuntersuchungen

Voraussetzungen:

- standardisiert
- reproduzierbar
- validiert
- sportartspezifisch
- in den Trainingsprozeß übertragbar

Komplexe Leistungsdiagnostik



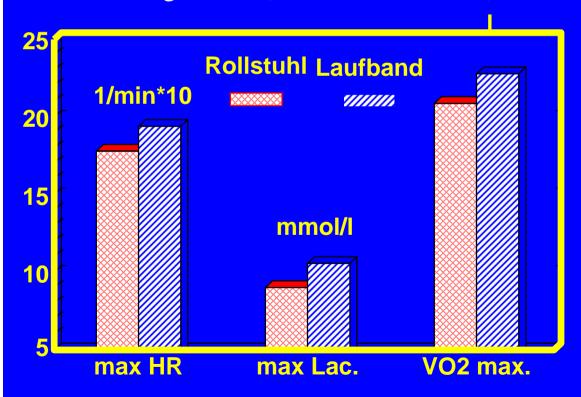

Leistungsdiagnostik und Anpassung Krafttraining

Verbesserung der Muskelkraft durch

- Verbesserung der intermuskulären und intramuskulären Koordination
- Hypertrophie (Synthese von kontraktilen Proteinen)
- mechanische Faktoren
- Änderung der Muskelfaserzusammensetzung
- mechanische Faktoren

Leistungsdiagnostik

Vicon 3 D Biomechanischer Test



Sportartspezifische Leistungsdiagnositk

Rollstuhlergometrie

Laufband (6 km/h, 2 km/h, 3 min)

Ergometer (20 W, 20 W, 3 min)

Sportartspezifische Leistungsdiagnostik für Rollstuhl-Leichtathleten (Mittel- und

Langstrecke)

	HALBMARATHON		MARATHO	N
	r	р	r	p
MAX-L	0,860	0,000	0,913	0,000
MAX-LA	0,680	0,015	0,625	0,007
MAX-VO	0,655	0,021	0,704	0,002
L-2		- 14 HARA	0,609	0,036
L-3			0,833	0,000
L-4	0,602	0,038	0,860	0,000
L-IAS	0,716	0,009	0,863	0,000
L-AS	0,778	0,003	0,897	0,000
VO-4	0,613	0,034	0,681	0,005
VO-IAS	0,616	0,033	0,668	0,006
VO-AS			0,636	0,011

Paraplegiker: 6 km/h, 2 km/h, 3 min, 1,5% Laufbandsteigung

Tetraplegiker: 4 km/h, 1 km/h, 3 min, 1,5% Laufbandsteigung

Leistungsdiagnostik und Wettkampfergebnis

Korrelation der Ergebnisse der Leistungsdiagnostik mit der Wettkampfgeschwindigkeit im Rollstuhl-Marathon

	r	р
Pmax	0,913	0,00
VO2max	0,704	0,01
PAS	0,897	0,00
PIAS	0,863	0,00
P4mmol/l	0,860	0,00

Submaximaltest: PWC 170 (150, 130): Bewertung

- Beurteilung der aeroben Leistungsfähigkeit (Submaximalbereich) zu ohne Berücksichtigung der individuellen Hf
- Vergleichbarkeit von Alters- oder Trainingsgruppen
- Gute Beurteilung des individuellen Trainingsfortschrittes

	Mär	nner Frai	uen
PWC 13	30 1,50	1,25	5
PWC 15	50 2,00	1,60)
PWC 17	70 2,50	2,00)

Geschlechtsabhängige Normwerte für PWC in Watt/kg Körpergewicht

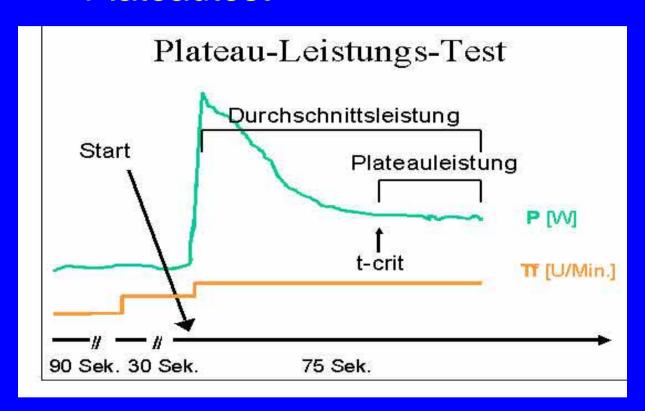
Submaximaltest: PWC 170 (150, 130): Durchführung

Physical Work Capacity bei 170 Puls/min (150/min; 130/min):

- ausgehend von 25 oder 50 Watt
- Erhöhung der Belastung nach jeweils 2 min. bei gleichzeitiger Pulskontrolle
- Ermittelt wird die Wattleistung, die der Patient bei 170 Puls erreicht
- Bei über 50jährigen bietet sich 150 Puls/min. an, bzw. in höherem Alter 130 Puls/min

Maximaltest 180-LA (220-LA): Durchführung

- Stufentest beginnend mit 50 Watt, in 50 Watt Stufen jeweils 3 min. bis zur Ausbelastung.
- Ausbelastungskriterien sind:
 Erreichen von 180- bzw. 220- LA oder subjektive
 Erschöpfung.
- Es handelt sich um einen Maximaltest, der Gesundheit und eine hohe Motivation erfordert.


Maximaltest 180-LA (220-LA): Beurteilung

- 2.5 Watt/kg = Normalperson weiblich (20-30 Jahre)
- 3 Watt/kg = Normalperson männlich (20-30 Jahre)
- 4 Watt/kg = Gut trainierter Breitensportler,
 - Leistungssportler (ohne Ausdauersport)
- 5 Watt/kg = Ausdauertrainierter Leistungssportler
- 6 Watt/kg = Hochausdauertrainierter Spitzensportler (Radrennfahrer)

Für jedes Lebensjahr über 30 Jahre wird von dem Normwert 1 % pro Lebensjahr reduziert.

Plateautest

- 75 sec, 90-110/min
- Leistung, VO2, Hf und Laktat nach Belastung